

INDIVIDUALITY IN SYNTACTIC VARIATION AN INVESTIGATION OF THE 17TH-CENTURY GERUND ALTERNATION

Lauren Fonteyn & Andrea Nini
Leiden University Centre for Linguistics (LUCL)
University of Manchester

Why is the individual important to consider?

- Increasing evidence that individuals are quite different in L1-attainment (Dabrowska 2012), and differences in individual usage exist to the extent that they can be used to identify speakers (Barlow 2013, Nini 2018).
- (2) If a population is very heterogeneous, not considering individual behavior makes you run the risk of:
 - Missing patterns (Gries & Hilpert 2010; Tagliamonte & Baayen 2012)
 - mistakenly identifying patterns (Fonteyn 2017)

- Growing body of historical (socio-)linguistic studies on syntactic
 change devote more attention to:
 - Agents of change and diffusion (e.g., Pratt & Denison 2000 [but:
 Van Bergen 2013]; Bergs 2005; Raumolin-Brunberg 2009)
 - How individual behavior feeds into population-level change (e.g., Nevalainen et al. 2011; Nevalainen & Raumolin-Brunberg 2016; Baxter & Croft 2016; Hundt et al. 2017; Petré 2017; Petré & Van de Velde 2018).

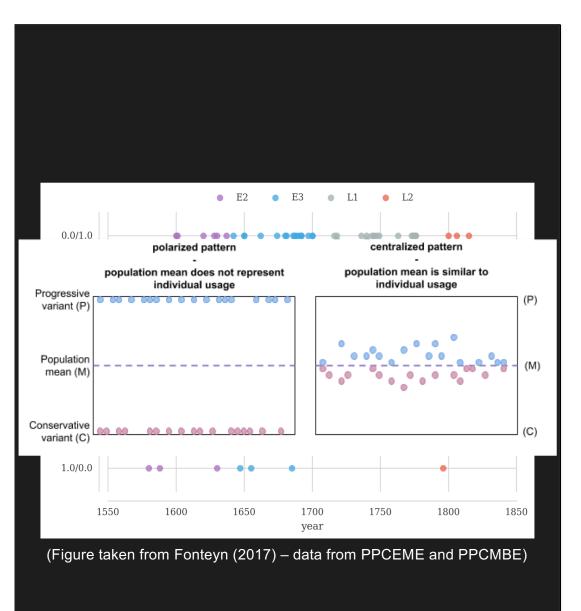
THE GERUND ALTERNATION

VARIANT OF: ... should affect us more then the shedding of the warmest blood in our veins (John Flavell, 1668 > EMMA)

VS.

VARIANT Ø: ... made an end of Ø Shedding Ø the Blood of Rams (George Fox, 1686 > EMMA)

HISTORICAL DEVELOPMENT


Gerund is an abstract deverbal noun in -ing, with nominal syntactic features (NG) (e.g. by shedding of blood)

Middle English

Gerund was re-analysed as part of the verb system and acquired the ability to govern a *direct object* (Fanego 2004) (c. 1250 - e.g. *by shedding blood*)

Modern English

Gradual spread of the *of*-less variant (Fanego 2004) to new syntactic environments

Variable users?

- The rise of gerunds with direct objects is a slow, gradual change of an abstract pattern, with "a significant fraction of mixed-usage speakers throughout the change" (Baxter & Croft 2016: 165; Nevalainen et al. 2011)
- Thus, the we observe a centralized pattern.
- Suggestion of homogeneity: individual usage resembles the population level mean in such cases.

However:

- These are very simple statistics that do not take into account whether (and how) each individual conditions variation.
- Not every 50-50 distribution is the same...

Andrea

BY	THROUGH
by reading books	through reading of books

BY	THROUGH	
by reading of books	through reading books	

50% VG - 50% NG

50% NG - 50% VG

RESEARCH QUESTIONS

- How consistently do speakers in a population converge on the same constraint effects on linguistic variables? Do we observe 'individual conditioning' of (syntactic) variation? (Guy 2015; Mackenzie 2019)
- If so, how/where does that individuality reveal itself in the individual's linguistic behavior?

DATA AND ANALYSIS

CORPUS

Early Modern Multiloquent Authors (EMMA; Petré et al. 2018)

- Sample of 50 of the most prolific English writers born in the 17th century (mostly belonged to the London-based elite)
- 5 generations

In this study:

- 19 randomly selected speakers, born between 1600 and 1645 (3 generations)
- Focus on prose and letters
- 14,078 gerunds

DATA SET - GENERAL

Generation 1 (°1599 – 1613)	Generation 2 (∘1621 – 1627)	Generation 3 (°1639 – 1644)	
OF: 1349 (40.90%)	OF: 1148 (29.98%)	OF: 1496 (21.52%)	
Ø: 1949 (59.10%)	Ø: 2681 (70.02%)	Ø: 5455 (78.84%)	

Generation 1 (1599 - 1613) Generation 2 (1621 - 16		1 - 1627)	Generation 3 (1639 - 1644)		
Heylyn, Peter	OF: 344 (46.17%) Ø: 401 (53.83%)	Boyle, Roger	OF: 79 (29.15%) Ø: 192 (70.85%)	Mather, Increase	OF: 201 (23.93%) Ø: 639 (76.07%)
Prynne, William	OF: 496 (47.06%) Ø: 558 (53.83%)	Pierce, Thomas	OF: 91 (23.58%) Ø: 295 (76.42%)	Crouch, Nathaniel	OF: 197 (19.64%) Ø: 806 (80.36%)
Fuller, Thomas	OF: 172 (38.83%) Ø: 271 (61.17%)	Fox, George	OF: 213 (35.80%) Ø: 382 (64.20%)	Behn, Aphra	OF: 18 (6.57%) Ø: 256 (93.43%)
Milton, John	OF: 235 (40.94%) Ø: 339 (59.06%)	Boyle, Robert	OF: 79 (13.30%) Ø: 515 (86.70%)	Burnet, Gilbert	OF: 509 (20.72%) Ø: 1948 (79.28%)
Taylor, Jeremy	OF: 102 (21.16%) Ø: 380 (78.84%)	Swinnock, George	OF: 55 (17.35%) Ø: 262 (82.65%)	Penn, William	OF: 571 (24.02%) Ø: 1806 (75.98%)
		Bunyan, John	OF: 401 (51.74%) Ø: 374 (48.26%)		
		Flavell, John	OF: 58 (26.01%) Ø: 165 (73.99%)		
		Tillotson, John	OF: 82 (31.78%) Ø: 176 (68.22%)		
		Dryden, John	OF: 90 (21.95%) Ø: 320 (78.05%)		

GENERAL MODELS

Rather than controlling for individual variation (cf. Gries & Hilpert 2010), this study wishes to determine:

- (i) the extent of individual variation
- (ii) how/where individuals differ

Conditional inference tree (binary splits until no longer justified)

ctree(gerund ~ age + author + det + func + generation + genre + verb_type, data=df)

Random forest (1000 conditional inference trees contribute to final model)

cforest(gerund ~ age + author + det + func + generation + genre + verb_type, data=df, controls=cforest_control(mtry = 6, ntree=1000))

Determiner

Function

Verb Type

External

BARE

By ø destroying Souls, he

POSS

his fearing God more then Man was ...

THE

 The seeing of our Friends in Heaven will ...

Α

a cry will be among you, and
 a wishing you had never
 been born

QUANT

... **no** reverencing of images

DEM

This forgetting of the God that saves us ...

BY, IN, FOR, OF, TEMP, ...

- by onely torturing of men
- in the destroying of the ...
- after his blaspheming Shakespeare.

OBJECT

 I would seriously recommend the Arming of our Pikemen

SUBJECT COMPLEMENT

- ... that there should be christening of children
- It is not the giving out of mercy that troubles him, but

SUBJECT

 The laying down of life did abundantly proclaim his love

LEX

 whilst others make them groan, by abusing them to sin, and subjecting them to their lusts.

'LIGHT'

- He is accus'd of Malevolence, and of taking Actions in the worst Sence
- ... that prayers, and supplication, and giving of thanks be made for all men

HAVE

 there is more required to make a good Scholler, then onely the **having** of many bookes

GENERATION

- G1
- □ G2
- □ G3

AGE

- Numeric
 - Age of author at time token was produced

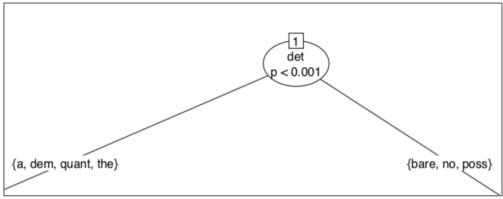
GENRE

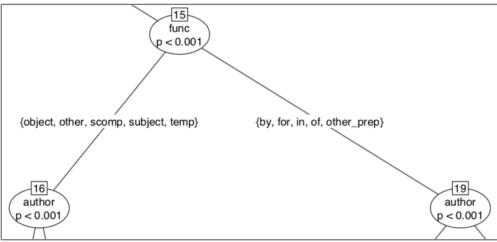
- letters
- Prose

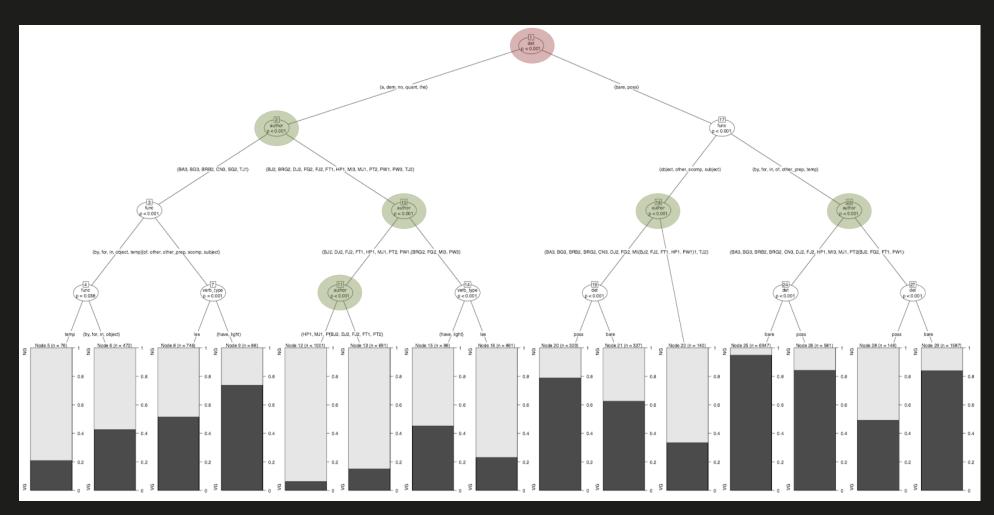
AUTHOR

19 levels

Factors based on Fanego (2004), De Smet (2013) & Fonteyn (2019)




Model residuals


Accuracy 0.85 AUC 0.81

Binary splits

- (1) determiner {a, the, dem} vs. {bare, no, poss}

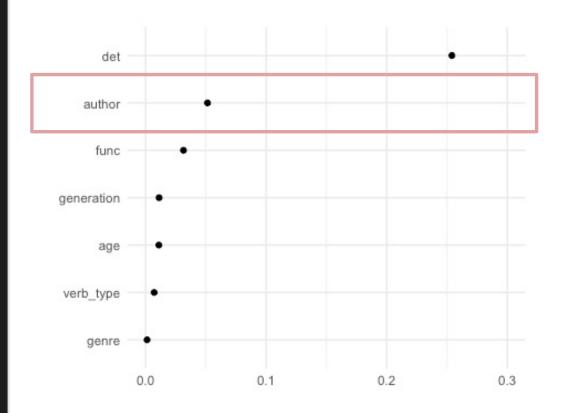
Model residuals

Accuracy 0.86 AUC 0.81

Variable importance

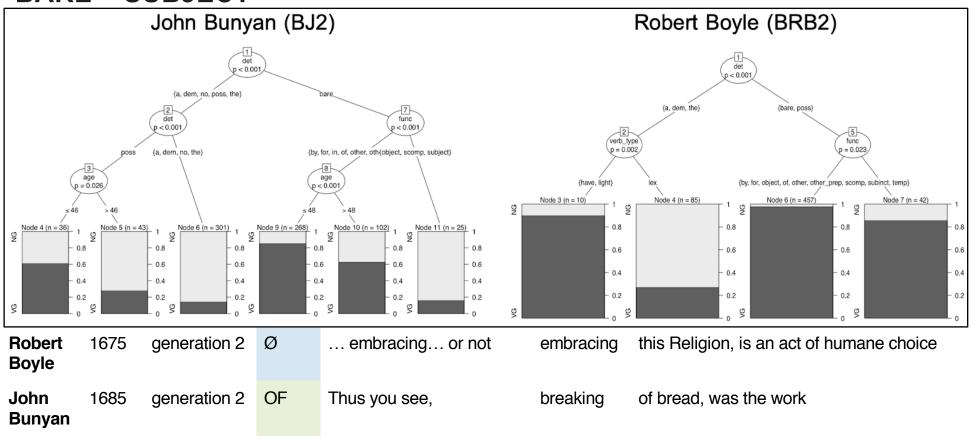
 det
 0.253

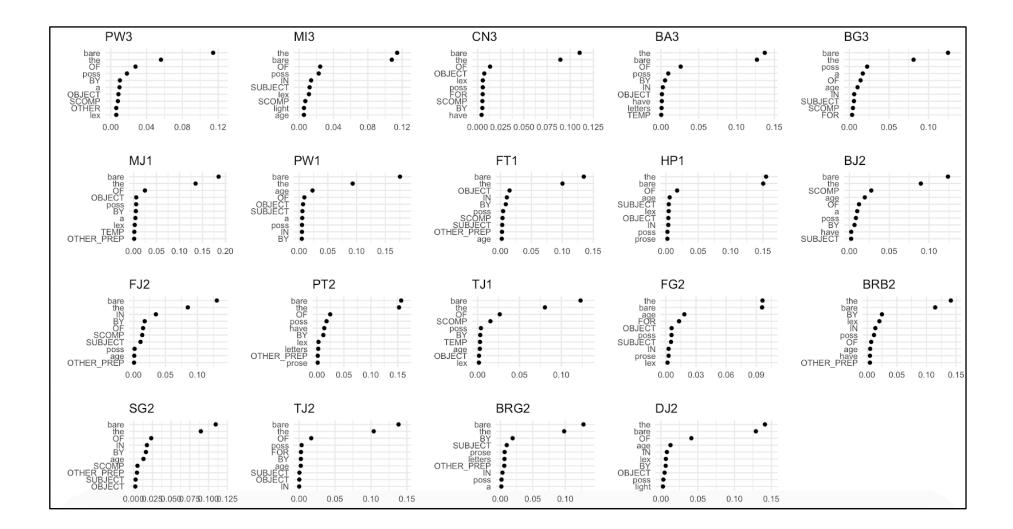
 author
 0.051

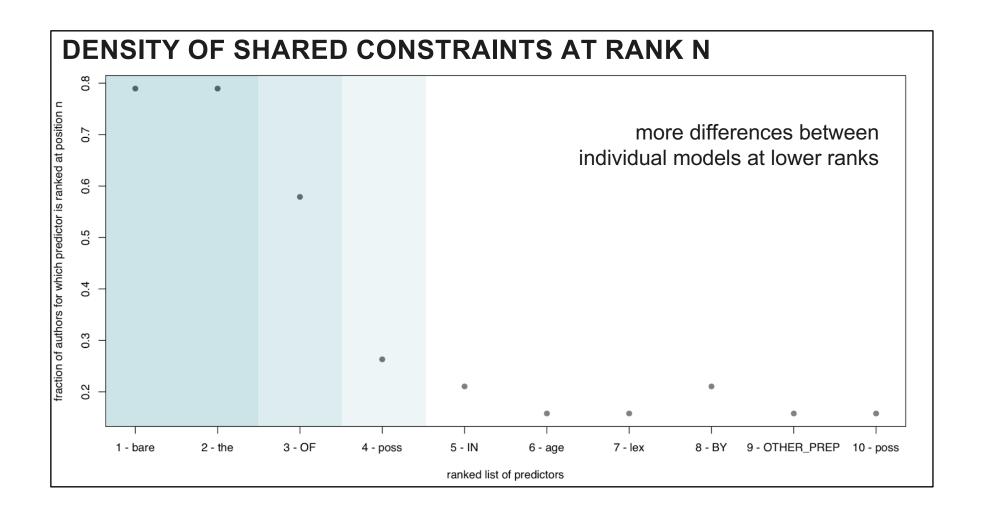

 func
 0.032

 generation
 0.011

 age
 0.011


 verb_type
 0.007


 genre
 0.001



BARE + SUBJECT

CONCLUSIONS

- Even with centralized patterns of variation and change, there can still be substantial heterogeneity in terms of how individual language users condition the (syntactic) alternation pair in flux.
- These results can be explained by the fact that **different individuals** can come across different exemplars of the competing constructions, and consequently will build slightly **different cognitive models** (e.g. Dabrowska 2012).
- Yet, at the same time, there are clearly some generalizations that can be made across all authors in the sample.
 - e.g. <nominal determiners> vs. <bare, poss>

CONCLUSIONS

- The post hoc analysis helped determine the locus of this individual variance:
 - individuals appear to behave homogeneously with regard to a very select number of (obvious) grammatical contexts,
 - but as the personalized models become more specific, including more (interacting) factors, they also become more idiosyncratic.

THANK YOU.

Lauren Fonteyn – I.fonteyn@hum.leidenuniv.nl Andrea Nini – andrea.nini@Manchester.ac.uk